The assessment of snow, glacier and rainfall runoff contribution to discharge in mountain streams is of major importance for an adequate water resource management. Such contributions can be estimated via hydrological models, provided that the modeling adequately accounts for snow and glacier melt, as well as rainfall runoff. We present a multi-dataset calibration approach to estimate runoff composition using hydrological models with three levels of complexity. For this purpose the code of the conceptual runoff model HBV-light was enhanced to allow calibration and validation of simulations against glacier mass balances, satellite-derived snow cover area and measured discharge. Three levels of complexity of the model were applied to glacierized catchments in Switzerland, ranging from 39km2 to 103km2. The results indicate that all three observational datasets are reproduced adequately by the model, allowing an accurate estimation of the runoff composition in the three mountain streams. However, calibration against only runoff leads to unrealistic snow and glacier melt rates. Based on these results we recommend using all three observational datasets in order to constrain model parameters and compute snow, glacier and rain contributions. Finally, based on the comparison of model performance of different complexities we postulate that the availability and use of different datasets to calibrate hydrological models might be more important than model complexity to achieve realistic estimations of runoff composition.
24 February 2015
Our study was published online:
http://onlinelibrary.wiley.com/doi/10.1002/2014WR015712/abstract
29 May 2014
We discuss the advantages of multiple dataset calibration within a HEPEX web-seminar:
https://www.youtube.com/watch?v=iMMoebtk70o
28 April 2014
We present results of our work on multiple dataset calibration at EGU2014:
http://meetingorganizer.copernicus.org/EGU2014/EGU2014-1122.pdf